mass on an incline [ Atwood's machine ] [ bag of marbles ] [ balance moon stone ] [ ball up/down ] [ bead parabola accelerometer ] [ boat anchor lake ] [ boat time ] [ bobbin on incline ] [ bosun's chair ] [ bouncing ball ] [ bowling ball rolling ] [ bug on band ] [ bursting shell ] [ falling chain ] [ Feynman's restaurant problem ] [ five pills ] [ flying cable ] [ forced pendulum ] [ gold mountain ] [ half pills ] [ hallway pole ] [ impelled rod ] [ inelastic relativistic collision ] [ infinite pulleys ] [ mass on an incline ] [ maximum angle of deflection ] [ packs of shirts ] [ particle in bowl ] [ particle in cone ] [ particle on sphere ] [ particle points parabola ] [ pile of bricks ] [ pion muon neutrino ] [ piston ramp spring ] [ plank weight trough ] [ rocket vs. jet ] [ roll without slipping ] [ rough inclined plane ] [ shooting marbles ] [ speedometer test ] [ three balls ] [ three logs ] [ turntable cart ] [ two rolling balls ] [ wheel and block ] [ whirling pendulum ] [ worlds fair ornament ]

A mass M1 slides on a 45º inclined plane of height H as shown. It is connected by a flexible cord of negligible mass over a small pulley (neglect its mass) to an equal mass M2 hanging vertically as shown. The length of the cord is such that the masses can be held at rest both at height H/2. The dimensions of the masses and the pulley are negligible compared to H. At time t = 0 the two masses are released.
(a) For t > 0 calculate the vertical acceleration of M2
(b) Which mass will move downward? At what time will it strike the ground?
(c) If the mass in (b) stops when it hits the ground, but the other mass keeps moving, show whether or not it will strike the pulley.