maximum angle of deflection

A moving particle of mass M collides perfectly elastically with a stationary particle of mass m < M. Find the maximum possible angle through which the incident particle can be deflected.

Solution by Julien Clément-Cottuz:

The angle of deflection θ is the angle of which the M particle is deviated. I choose (in order to simplify the trigonometric calculus) the (x,y) axes so that the angle between x and the M direction is $\theta/2$.

v is the velocity before the collision and, v_1 and v_2 are the velocities of M and m after the collision.

Conservation of energy:

$$E = \frac{1}{2}M v^2 = \frac{1}{2}M v_1^2 + \frac{1}{2}mv_2^2$$
 (1)

Conservation of momentum:

$$P_{x} = M v \cos(\theta/2) = M v_{1} \cos(\theta/2) + m v_{2} \cos(\beta)$$
 (2)

$$P_{y} = -M v \sin(\theta/2) = M v_{1} \sin(\theta/2) - m v_{2} \sin(\beta)$$
 (3)

From (2) and (3) you get two formulae for v2 and substitute them into (1):

$$M(v^{2}-v_{1}^{2})=mv_{2}^{2}=m\left[\frac{M\cos(\theta/2)(v-v_{1})}{m\cos(\beta)}\right]\left[\frac{M\sin(\theta/2)(v+v_{1})}{m\sin(\beta)}\right]$$

Simplifying:

$$1 = \frac{M}{m} \frac{\cos(\theta/2)\sin(\theta/2)}{\cos(\beta)\sin(\beta)} = \frac{M}{m} \frac{\sin(\theta)}{\sin(2\beta)}$$

The deflection angle is maximum when $\sin(2\beta)=1$ (so $\beta=\pi/4$), and $\sin(\theta)=m/M$.