particle points parabola

P and Q are two points a distance d apart at heights h and k above a given horizontal plane. What is the minimum speed v with which a particle can be projected from the horizontal plane so as to pass through P and Q ?

Solution by Michael A. Gottlieb

Let \boldsymbol{u} be the velocity of the particle at P, let \boldsymbol{w} be the velocity of the particle at Q and let the acceleration of gravity be \boldsymbol{g}.

For $u=|\boldsymbol{u}|$ to be the minimum speed required for the particle to get from point P to Q, it must be just fast enough so that the component of the particle's velocity in the direction of \boldsymbol{u} equals zero when it arrives at Q. Thus \boldsymbol{w} must be perpendicular to \boldsymbol{u}.

A parabola is defined as the locus of points equidistant from a fixed point (the focus) and a straight line (the directrix). It can be shown that perpendicular tangents to a parabola meet on its directrix, while the chord connecting the tangent points includes the focus. Thus the intersection X of the lines colinear with \boldsymbol{u} and \boldsymbol{w} lies on the directrix of the particle's parabolic path from P to Q, whose focus F lies on the chord $P Q$, as shown in the figure.

From the definition of parabola $P F=P S$ and $Q F=Q R$, while by construction $P S=R Y$, $P F+Q F=P Q$, and $Q R+Q Y=R Y$. It follows that

$$
P S=R Y=(P Q+Q Y) / 2
$$

For the u-component of the particle's velocity to be zero when it reaches Q, kinematics dictates that $u^{2}=2 g_{u} P X$, where g_{u} is the component of \boldsymbol{g} in the direction of \boldsymbol{u}. Observing that $g_{u}=g \sin \Varangle S X P=g P S / P X=g(P Q+Q Y) / 2 P X$, we find that

$$
u^{2}=2[g(P Q+Q Y) / 2 P X] P X=g(P Q+Q Y) .^{1}
$$

By conservation of energy $v^{2}=u^{2}+2 g Y T$. Thus $v^{2}=g(P Q+Q Y+2 Y T)$. By the problem statement $P Q=d, Y T=h$, and $Q Y+Y T=k$. Therefore $v^{2}=g(d+h+k)$.

[^0]
[^0]: ${ }^{1}$ Another way to show it: Kinematics dictates that $w^{2}=2 g_{w} Q X$, where g_{w} is the component of \boldsymbol{g} in the direction of $\boldsymbol{w} . g_{w}=g \sin \Varangle R X Q=g Q R / Q X$, so $w^{2}=2 g Q R$. By conservation of energy $u^{2}=w^{2}+2 g Q Y$. Thus $u^{2}=2 g(Q R+Q Y)=2 g R Y=g(P Q+Q Y)$.

